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Abstract 
Spatial auto- and cross-correlation functions of quantities 
distributed radially over spheres of different radii are presented 
in analytical form. In terms of its application to small-angle 
(neutron and X-ray) scattering, the distance distribution 
function is calculated for two-shell ionic micelles and for a 
spherical Gaussian contrast distribution. 

1. Introduction 
In many applications, the small-angle scattering (SAS) intensity 
I(Q) can be decomposed into the product of form and structure 
factors F(Q) and S(Q), respectively: I(Q) ,~ npF(Q)S(Q), where 
np is the number of particles per unit volume (Hayter & Penfold, 
1981, 1983; Cabane et al., 1985). The form factor equals the 
Fourier transform of At32(r), the autocorrelation function of the 
mean scattering contrast Ap(r) of the individual scatterers: 
F(Q) = 4zr ~ A~2(r)rE[sin(Qr)/Or] & and p(r) = r E A~( r )  is 
called the distance distribution function (Guinier & Foumet, 
1955; Glatter & Kratky, 1982; Svergun & Feigin, 1986). 

The inverse Fourier transform (np/27r 2) x 
f~oF(Q)S(Q)QE[sin(Qr)/Qr]dQ of the scattering intensity 
results in A/32ys(r); in dilute systems, i.e. for S(Q)~  1, it 
reflects the properties of the internal structure of the individual 
scatterers: A/32~(r) _~ npA~E(r). In X-ray scattering, because 
one-dimensional detectors produce scattering patterns in 
necessarily fine Q steps, A~2ys(r) can reliably be determined 
from experiments (Glatter, 1982, 1988; Glatter & Gruber, 1993) 
and it serves as the basis for structural analysis - regardless of 
the difficulties of the conceptual and practical nature involved 
(Porod, 1982). 

In spite of its central role, At32(r) is applied to interpreting 
scattering patterns only under very limited conditions. In the 
classical problem of uniform homogeneous spheres of 
radii R (Guinier & Foumet, 1955; Porod, 1982), we have 
A / 3 2 ( r )  = Ap2AVR,R(r), where Ap is constant and AVR,R(r ) is 
the volume of the intersection of spheres at distance r. Glatter & 
Hainisch (1984) generalized this result for radially distributed 
Ap and approximated A~ 2 by a finite linear combination of 
step functions. The aim of this paper is to derive an exact 
analytical expression for the cross- and autocorrelation func- 
tions of radially distributed scattering contrast functions. 

2. Correlation functions of radially distributed quantities 

The cross-correlation function of quantities fl(rl)  and f2(r2), 
distributed radially over spheres of radii R 1 and R2, is given by 
the following integral: 

~2(r) = f fl(r,)f2(r2)dV(r,, &x, r2, dr2; r) (1) 
A VRI.R 2 (r) 

taken over the volume A VRI.R2 (r) of intersection of the spheres; 
for notation see Fig. 1. The intersection volume, aider Glatter & 
Hainisch (1984), is expressed by 

AVRI,R2(r ) = (27r/3)[R~ + R~ -(3r/a)(R 2 + RE) 

-(3/8r)(RZz-R~) 2 + (r3/8)] (2) 

and the use of bipolar coordinates when evaluating the integral 
in (1) is avoided by calculating the elementary volume dV from 
(2) as 

dV(rl, &a, r2, &2; r) = AVrl,r2(r ) -- AVrl,r2_drz(r ) 

- -  m Vrl -dr ,  ,r 2 ( r )  -31- m Vrl _dr l ,r2_dr 2 ( r )  

for dr I , dr 2 --+ 0. (3) 

This result leads to the following form suitable for practical 
purposes, in particular numerical applications: 

R 2 rnin(R I ,r+r2) 
f~(r)  = (2~r/r) f f2(r2)r2 dr2 f A(rl)r~ drl. (4) 

max( O,r--R l ) ]r--r2 [ 

By settingfl (r) =f2(r) =f(r) ,  (4) results in the autocorrelation 
function off(r) .  

3. Applications to SAS 
In many SAS applications, the objects to be studied (e.g. 
colloids, vesicles etc.) are considered as spherical particles 
divided into two spherical shells of radii R1, R2 with constant 
scattering contrast Apl, APE inside. Such contrast distributions 

Fig. 1. Notations for calculating the cross-correlation function~(r) of 
quantities fx (r x) and fz(r2), distributed radially on spheres of radii R I 
and R2, respectively. 
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are described by step functions plotted in Fig. 2(a); by setting 
them in (4), the following form results for the autocorrelation 
function o f  the scattering contr~ist: 

A,52(r) = (AP2)2 AVR2& (r) + 2(Ap,  - AIo2)AIo2A VRI,R2 (F) 
-+- (Ap  1 -- Ap2)2AV&,R,(r). (5) 

In the particular case of  a finite number  of  step functions, this 
result follows directly from (2) and (3). 

Equation (5) is applied to calculate p(r) of  a hypothetical 
caesium dodecyl  sulfate (CsDDS) micelle of  aggregation 
number  nag = 76 for X-rays and neutrons. The inner radius 
(of  the miceUar core) is determined by the aggregation number  
and R1 = 1.86 nm; the outer is chosen with some degree of  
arbitrariness: R2 = 3 . 8 6 n m  (Vass et al., 1997). Neutron 
scattering-length data are taken from Sears (1984), X-ray data 
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Fig. 2. (a) Distribution of scattering-length density in a CsDDS micelle 
and in a Gaussian particle; (b) corresponding spatial autocorrelation 
functions. 

are calculated from the classical electron radius. Radial 
distributions of  the scattering contrast are plotted in Fig. 2(a) 
and the corresponding p(r) functions in Fig. 2(b); the curves 
show the difference between the information gained by SAXS 
and SANS from the same system. 

In general applications o f  (4), the correlation function cannot 
be expressed by a finite linear combination of  overlapping 
volumes. Let us assume that the scattering contrast has a 
hypothetical Gaussian distribution o f  amplitude Po and width a:  
Ap(r)  = [po/(2rOl/2cr] exp- ( r /21 /2a )2 .  For A/32(r), we have 

A/32(r) = 2p027rl/2o " exp -(r/21/2o') 2 erf[(2R - r)/2o-] 

- (4p~o~/r) exp -(R/21/2a) 2 

x {exp - [ ( r  - R)/21/2o'] 2 

- -  exp--(R/21/2cr)2}. (6) 

Calculations were made with P0 = 3.51 x 109 cm -2 and o- = 
2 nm; results for Ap(r)  andp( r )  are respectively plotted in Figs. 
2(a) and (b). 
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