SHORT COMMUNICATIONS

Acta Cryst. (1998). A54, 249-250

Spatial correlation functions of radially distributed quantities applied to small-angle scattering

Sz. Vass at KFKI Atomic Energy Research Institute, Hungarian Academy of Sciences, H-1525 Budapest, PO Box 49, Hungary. E-mail: szvass@sunserv.kfki.hu
(Received 16 June 1997; accepted 13 November 1997)

Abstract

Spatial auto- and cross-correlation functions of quantities distributed radially over spheres of different radii are presented in analytical form. In terms of its application to small-angle (neutron and X-ray) scattering, the distance distribution function is calculated for two-shell ionic micelles and for a spherical Gaussian contrast distribution.

1. Introduction

In many applications, the small-angle scattering (SAS) intensity $I(Q)$ can be decomposed into the product of form and structure factors $F(Q)$ and $S(Q)$, respectively: $I(Q) \approx n_{p} F(Q) S(Q)$, where n_{p} is the number of particles per unit volume (Hayter \& Penfold, 1981, 1983; Cabane et al., 1985). The form factor equals the Fourier transform of $\Delta \tilde{\rho}^{2}(r)$, the autocorrelation function of the mean scattering contrast $\Delta \rho(r)$ of the individual scatterers: $F(Q)=4 \pi \int_{\sigma}^{\infty} \Delta \tilde{\rho}^{2}(r) r^{2}[\sin (Q r) / Q r] \mathrm{d} r$ and $p(r)=r^{2} \Delta \tilde{\rho}^{2}(r)$ is called the distance distribution function (Guinier \& Fournet, 1955; Glatter \& Kratky, 1982; Svergun \& Feigin, 1986).
The inverse Fourier transform $\left(n_{p} / 2 \pi^{2}\right) \times$ $\int_{0}^{\infty} F(Q) S(Q) Q^{2}[\sin (Q r) / Q r] \mathrm{d} Q$ of the scattering intensity results in $\Delta \tilde{\rho}_{\text {sys }}^{2}(r)$; in dilute systems, i.e. for $S(Q) \approx 1$, it reflects the properties of the internal structure of the individual scatterers: $\Delta \tilde{\rho}_{\text {sys }}^{2}(r) \simeq n_{p} \Delta \tilde{\rho}^{2}(r)$. In X-ray scattering, because one-dimensional detectors produce scattering patterns in necessarily fine Q steps, $\Delta \tilde{\rho}_{\text {sys }}^{2}(r)$ can reliably be determined from experiments (Glatter, 1982, 1988; Glatter \& Gruber, 1993) and it serves as the basis for structural analysis - regardless of the difficulties of the conceptual and practical nature involved (Porod, 1982).

In spite of its central role, $\Delta \tilde{\rho}^{2}(r)$ is applied to interpreting scattering patterns only under very limited conditions. In the classical problem of uniform homogeneous spheres of radii R (Guinier \& Fournet, 1955; Porod, 1982), we have $\Delta \tilde{\rho}^{2}(r)=\Delta \rho^{2} \Delta V_{R, R}(r)$, where $\Delta \rho$ is constant and $\Delta V_{R, R}(r)$ is the volume of the intersection of spheres at distance r. Glatter \& Hainisch (1984) generalized this result for radially distributed $\Delta \rho$ and approximated $\Delta \tilde{\rho}^{2}$ by a finite linear combination of step functions. The aim of this paper is to derive an exact analytical expression for the cross- and autocorrelation functions of radially distributed scattering contrast functions.

2. Correlation functions of radially distributed quantities

The cross-correlation function of quantities $f_{1}\left(r_{1}\right)$ and $f_{2}\left(r_{2}\right)$, distributed radially over spheres of radii R_{1} and R_{2}, is given by the following integral:

$$
\begin{equation*}
\tilde{f}_{12}^{2}(r)=\int_{\Delta R_{R_{1}, R_{2}(r)}} f_{1}\left(r_{1}\right) f_{2}\left(r_{2}\right) \mathrm{d} V\left(r_{1}, \mathrm{~d} r_{1}, r_{2}, \mathrm{~d} r_{2} ; r\right) \tag{1}
\end{equation*}
$$

taken over the volume $\Delta V_{R_{1}, R_{2}}(r)$ of intersection of the spheres; for notation see Fig. 1. The intersection volume, after Glatter \& Hainisch (1984), is expressed by

$$
\begin{align*}
\Delta V_{R_{1}, R_{2}}(r)= & (2 \pi / 3)\left[R_{1}^{3}+R_{2}^{3}-(3 r / 4)\left(R_{1}^{2}+R_{2}^{2}\right)\right. \\
& \left.-(3 / 8 r)\left(R_{2}^{2}-R_{1}^{2}\right)^{2}+\left(r^{3} / 8\right)\right] \tag{2}
\end{align*}
$$

and the use of bipolar coordinates when evaluating the integral in (1) is avoided by calculating the elementary volume $\mathrm{d} V$ from (2) as

$$
\begin{align*}
\mathrm{d} V\left(r_{1}, \mathrm{~d} r_{1}, r_{2}, \mathrm{~d} r_{2} ; r\right)= & \Delta V_{r_{1}, r_{2}}(r)-\Delta V_{r_{1}, r_{2}-d r_{2}}(r) \\
& -\Delta V_{r_{1}-\mathrm{d} r_{1}, r_{2}}(r)+\Delta V_{r_{1}-\mathrm{d} r_{1}, r_{2}-\mathrm{d} r_{2}}(r) \\
\rightarrow & \left(2 \pi r_{1}^{2} r_{2}^{2} / r\right)\left(\mathrm{d} r_{1} \mathrm{~d} r_{2} / r_{1} r_{2}\right) \\
& \text { for } \mathrm{d} r_{1}, \mathrm{~d} r_{2} \rightarrow 0 . \tag{3}
\end{align*}
$$

This result leads to the following form suitable for practical purposes, in particular numerical applications:
$\tilde{f}_{12}^{2}(r)=(2 \pi / r) \int_{\max \left(0, r-R_{1}\right)}^{R_{2}} f_{2}\left(r_{2}\right) r_{2} \mathrm{~d} r_{2} \int_{\left|r-r_{2}\right|}^{\min \left(R_{1}, r+r_{2}\right)} f_{1}\left(r_{1}\right) r_{1} \mathrm{~d} r_{1}$.
By setting $f_{1}(r)=f_{2}(r)=f(r)$, (4) results in the autocorrelation function of $f(r)$.

3. Applications to SAS

In many SAS applications, the objects to be studied (e.g. colloids, vesicles etc.) are considered as spherical particles divided into two spherical shells of radii R_{1}, R_{2} with constant scattering contrast $\Delta \rho_{1}, \Delta \rho_{2}$ inside. Such contrast distributions

Fig. 1. Notations for calculating the cross-correlation function $\tilde{f}_{12}^{2}(r)$ of quantities $f_{1}\left(r_{1}\right)$ and $f_{2}\left(r_{2}\right)$, distributed radially on spheres of radii R_{1} and R_{2}, respectively.
are described by step functions plotted in Fig. 2(a); by setting them in (4), the following form results for the autocorrelation function of the scattering contrast:

$$
\begin{align*}
\Delta \tilde{\rho}^{2}(r)= & \left(\Delta \rho_{2}\right)^{2} \Delta V_{R_{2}, R_{2}}(r)+2\left(\Delta \rho_{1}-\Delta \rho_{2}\right) \Delta \rho_{2} \Delta V_{R_{1}, R_{2}}(r) \\
& +\left(\Delta \rho_{1}-\Delta \rho_{2}\right)^{2} \Delta V_{R_{1}, R_{1}}(r) . \tag{5}
\end{align*}
$$

In the particular case of a finite number of step functions, this result follows directly from (2) and (3).

Equation (5) is applied to calculate $p(r)$ of a hypothetical caesium dodecyl sulfate (CsDDS) micelle of aggregation number $n_{\mathrm{ag}}=76$ for X-rays and neutrons. The inner radius (of the micellar core) is determined by the aggregation number and $R_{1}=1.86 \mathrm{~nm}$; the outer is chosen with some degree of arbitrariness: $R_{2}=3.86 \mathrm{~nm}$ (Vass et al., 1997). Neutron scattering-length data are taken from Sears (1984), X-ray data

Fig. 2. (a) Distribution of scattering-length density in a CsDDS micelle and in a Gaussian particle; (b) corresponding spatial autocorrelation functions.
are calculated from the classical electron radius. Radial distributions of the scattering contrast are plotted in Fig. 2(a) and the corresponding $p(r)$ functions in Fig. 2(b); the curves show the difference between the information gained by SAXS and SANS from the same system.

In general applications of (4), the correlation function cannot be expressed by a finite linear combination of overlapping volumes. Let us assume that the scattering contrast has a hypothetical Gaussian distribution of amplitude ρ_{0} and width σ : $\Delta \rho(r)=\left[\rho_{0} /(2 \pi)^{1 / 2} \sigma\right] \exp -\left(r / 2^{1 / 2} \sigma\right)^{2}$. For $\Delta \tilde{\rho}^{2}(r)$, we have

$$
\begin{align*}
\Delta \tilde{\rho}^{2}(r)= & 2 \rho_{0}^{2} \pi^{1 / 2} \sigma \exp -\left(r / 2^{1 / 2} \sigma\right)^{2} \operatorname{erf}[(2 R-r) / 2 \sigma] \\
& -\left(4 \rho_{0}^{2} \sigma^{2} / r\right) \exp -\left(R / 2^{1 / 2} \sigma\right)^{2} \\
& \times\left\{\exp -\left[(r-R) / 2^{1 / 2} \sigma\right]^{2}\right. \\
& \left.-\exp -\left(R / 2^{1 / 2} \sigma\right)^{2}\right\} \tag{6}
\end{align*}
$$

Calculations were made with $\rho_{0}=3.51 \times 10^{9} \mathrm{~cm}^{-2}$ and $\sigma=$ 2 nm ; results for $\Delta \rho(r)$ and $p(r)$ are respectively plotted in Figs. 2(a) and (b).

Support from the Hungarian National Scientific Research Foundation OTKA (Grant No. T16184) is gratefully acknowledged.

References

Cabane, B., Duplessix, R. \& Zemb, T. (1985). J. Phys. (Paris), 46, 2161-2178.
Glatter, O. (1982). In Small-Angle X-ray Scattering, edited by O. Glatter \& O. Kratky. New York: Academic Press.
Glatter, O. (1988). J. Appl. Cryst. 21, 886-890.
Glatter O. \& Gruber, K. (1993). J. Appl. Cryst. 26, 512-518.
Glatter, O. \& Hainisch, B. (1984). J. Appl. Cryst. 17, 435-441.
Glatter O. \& Kratky O. (1982). Editors. Small-Angle X-ray Scattering. New York: Academic Press.
Guinier, A. \& Fournet, G. (1955). Small-Angle Scattering of X-rays. New York: John Wiley.
Hayter, J. B. \& Penfold, J. (1981). J. Chem. Soc. Faraday Trans. I, 77, 1851-1863.
Hayter, J. B. \& Penfold, J. (1983). J. Colloid. Interface Sci. 261, 1022-1030.
Porod, G. (1982). In Small-Angle X-ray Scattering, edited by O. Glatter \& O. Kratky. New York: Academic Press.
Sears, V. F. (1984). Thermal-Neutron Scattering Lengths and Cross Sections for Condensed Matter Research. Report AECL-8940, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada.
Svergun, D. I. \& Feigin, L. A. (1986). Small Angle X-ray and Neutron Scattering. Moscow: Nauka. (In Russian.)
Vass, Sz., Pleštíl, J., Borbély, S., Gilányi, T. \& Pospísil, H. (1997). J. Mol. Liquids, 72, 69-83.

